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Avallability Analysis of the k-out-of-n:G system
using Markov Model and Supplementary
Variable Technigue

M. A. El-Damcese, N. H. EI-Sodany

Abstract — Certain stochastic processes with discrete states in continuous time can be converted into Markov process by the well-known
method of including supplementary variables technique. This paper presents Markov models for analyzing the availability for the k-out-of-
n:G system with three types of failure (partial failure, complete failure under repair and complete failure under maintenance) using
supplementary variable technique. The Markov method is used to develop generalized expressions for system state probabilities and
system’s availability. An illustrative example is presented in order to illustrate the performance of the model. The transient and steady
states have been presented when the failure and repair rates are variables and constants respectively. Lagrange’'s method for partial
differential equations is used to solve system governing equations when the failure and repair rates are variables. When both the failure
and repair rates are constants, the system of differential equations with the initial conditions has been solved using Laplace transformation
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by the aid of Maple program. The steady state availability when both failure and repair rates are constants, has been computed.

Keywords —
transformation, Lagrange's method.

1 INTRODUCTION

The study of repairable systems is a basic and important
topic in reliability engineering. The system reliability and the
system availability play an increasingly important role in
industrial systems, and manufacturing systems. In order to find
the availability of a system one has to form a system of linear
differential equations using mnemonic rule. This rule states that
the derivative of the probability of every state is equal to the sum
of all probability flows which come from other states to the given
state minus the sum of all probability flows which go out from the
given state to the other states. The differential equations thus
derived are known as the Chapman-Kolmogorov differential
equations.

Throughout the history of reliability theory, large numbers of
reliability problems were solved by using reliability models.
There are several methods to establish such models. Among them
the supplementary variable technique plays an important role. In
case the failure and repair rates are variables then the sytem loses
its Markovian property. By Introducing supplementary variables,
the non-Marlovian character of the system is changed to
Markovian. Several authors have studied the reliability of the
various systems using supplementary variable technique. [4] first
put forward the supplementary variable technique and established
the M/G/1 queeuing model. After that, the supplementary variable
technique was used by many authors to solve a good number of
queuing problems.
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[10] analyzed N/G/1 finite queue with the supplementary variable
method. In the steady-state case, many problems are more readily
treated by the supplementary variable technique than by the
imbedded Markov chain. [8] first used the supplementary variable
technique to study a reliability model. After that, other
researchers widely applied this idea to study many reliability
problems. [1] discussed the supplementary variable technique in
stochastic model. [12] analyzed the reliability of polytube tube
industry using supplementary variable Technique. [13] used
supplementary variable technique for problem formulation. [15]
studied the stochastic behavior of standby system under
preemptive priority repair and obtained the expression for
transient and steady state of the system using techniques of
supplementary variables and Laplace transforms.

The problem of evaluating the availability and reliability of the
k-out-of-n:G system has been subject of many studies throughout
literature. Several authors have considered k-out-of-n:G systems.
[6] considered circular consecutive k-out-of-n:G systems. He has
applied continuous-time homogeneous Markov process to
evaluate availability, reliability and MTTF for circular
consecutive-k-out-of-n:G system with repairman, and when the
system displays a gradual degradation of its performance, its
availability and reliability are analyzed in terms of fuzzy success
states. [5] analyzed the k-out-of-n:G system with human errors,
common cause and time dependent system. [11] considered k-out-
of-n:G systems with M failure modes. He obtained closed form
solutions of the transient probabilities, reliability, and the mean
time to failure (MTTF) for non-repairable systems. For repairable
systems he suggested numerical solutions to obtain the reliability
and the mean time between failures (MTBF). [7] studied the
dynamic behavior of the k-out-of-n:G systems. [14] studied
unavailability analysis for k-out-of-n:G systems with multiple
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failure modes based on micro-Markov models. [3] found an exact
equation and an algorithm for reliability evaluation of k-out-of-
n:G system. [2] studied a direct method for reliability
computation of k-out-of-n:G systems.

This paper presents Markov method and supplementary
variable technique to obtain a general formula for the availability
of the k-out-of-n:G system of n-identical and independent
components subject to three types of failures and the repaired
component is good as new. A component can fail either due to a
partial failure or complete failure under repair or due to complete
failure under maintenance. In this paper we consider that the
system and its components has three states: up, degraded, and
down. The transition from up state to degraded state represents a
partial failure, and the transition from up state to down (failed)
state or from degraded state to down (failed) state represents a
complete failure.

The outline of the paper is as follows. The basic assumptions
and notations used are given in Section 2. Section 3 is voted to the
analysis of k-out-of-n:G system. The availability of the system is
obtained in this section using state probabilities, initial and
boundary conditions. In Section 4 we give a mathematical
modeling of the system when n=3 and k =2 and the
availability of the system is obtained when the failure and repair
rates are variables using Lagrange's method, and when the failure
and repair rates are constants using Laplace transformation and
also we obtained the steady state availability when the failure and
repair rates are constants. In Section 5 we obtained the numerical
solutions of the 2-out-of-3:G system when both failure and repair
rates are constants by the aid of Maple program. Some concluding
remarks are given in Section 6.

2 MODEL DESCRIPTION

We develop the Markov model and supplementary
variable technique for n-component system and these
components are identical and repairable. At time t =0 the
system is considered to be in good state and it fails when at
least k of the n components fail. The system or the
components may fail either due to partial failure or
complete failure under repair or complete failure under
maintenance. The assumptions and notations, on which the
present analysis is based upon, are as follows:

e The system is composed of n-identical and
independent components.

e Attime t =0 all components are up, and the system
can work if and only if at least k of the n components
work (or are good).

e All Failure and repair rates of the components are
taken as variables. So, this process is non-Markovian
and we will use the supplementary variable technique
to convert it into Markovian process. By using
supplementary variable technique, we can construct
the differential equations associated with the model.

e The repaired unit is as good as new one for a specified
duration.
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e Each component is failed with failure rate
A (y ),i =1,2,3,4 after an elapsed failure time y .

e The failed component is repaired with repair rate
H; (X ),i =12,3 after an elapsed repair time X .

e Failure and repair rates, 4 (y)and g (Xx), are
independent of each other.

e The system cannot return to the working condition
when n—k +1 components completely fail.

Notations:

n : the number of components in the system.

k : the minimum number of components that
must work for the k-out-of-n:G system to
work.

(m,m,,m,) : the state of the system, where m, ,m, and
m, represent the number of failed
components due to partial failure, complete
failure under repair and complete failure
under maintenance, respectively.

A(Y) : the failure rate of a component when it goes
from up state to degraded state after an
elapsed failure time vy .

A(Y) : the failure rate of a component when it goes
from up state to down state under repair
after an elapsed failure time y .

A(y) : the failure rate of a component when it goes
from up state to down state under
maintenance after an elapsed failure time y .

A(Y) : the failure rate of a component when it goes
from degraded state to down state under
repair after an elapsed failure time y

w(x) : the repair rate of a component when it goes
from degraded state to up state after an
elapsed repair time X .

1 (X) : the repair rate of a component when it goes
from down state under repair to up state
after an elapsed repair time X |

() : the repair rate of a component when it goes
from down state under maintenance to up
state after an elapsed repair time X .

P.(x,y,t) : probability that the system is in state i at
time { and has an elapsed failure time y
and elapsed repair time X , where i is the
state (m;,m,,m;), m,m,,m;=01..,n.

P(s) : Laplace transformation of P, (t).

3 ANALYSIS OF THE K-OUT-OF-N:G SYSTEM

State probabilities:

The state probabilities of the system P, (x,y t), where i
represent the state (m;,m,,m;), m;,m,,m, =0,1,...,n, can be
viewed as a result of solving the following set of first order
differential equations by assuming that:
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i =(m,m,,m,), a=(m,+Lm,m;), b=(m,m,+1Lm,)

, ¢=(m;,m,,m;+1), d =(m,-1L,m,,m;), h=(m,m,-1m,)
,f=(m,m,m,-1), g =(m,+1m,-1m,)
Form, =m,=m, =0:
3
( +n> A (y J J/ﬁ (x,y,t)dx dy
El (1.1)
+Iy2(x P, (x,y,t)dx dy +jy3(x P, (x,y,t)dx dy

Forl<m,<n,m,=m,=0:

(% aier% (n- m12 )+m, 4, y)+m1yl(x)j
P (xy.t)=(n-m +1) A (y )P, (x.Y:t) (1.2)

(Mg +1) 24 (X )Py (XY ) + 4 (X )Py (X, Vi)
+145 (X )P, (X, Y, t)

ForO<m,<n, 0<m,,m

Y)Y S j
P (%, 1) =(my+2) a1, ()P, (% y,t) +(m, + 1) 1, (xR, (1)
+(my+1) g (X )P, (X, y,t) [ Zm +1j

(A (Y )Py (63 1)+ 2 (¥ )Py (X, 0)+ & (¥ )P, (x3:1))

+(m+1) 4, (¥ )P, (x,%,1)
(1.3)
Form,+m,=n-k+1, m, =0:

0

(E &+—+Zm u ( J (X, )_[n—Zmi +1j
(A ()P (XY, )+ 2, (¥ )P, (XY )+ 4 (Y )Py (x,y,1)) (14)

+(my+1) 4, (¥ )P, (x.¥:1)

Form,+m,=n-k+1, m,=1..,k-

a 3
0,0,90 , 41
(6t o + +Z;m u ( J (X,y,t) [n ém, + j

(A (V)P (¥, )+ 2 (¥ )P, (X Y1)+ 2, (Y )P (x,y.1)) (1.5)
+(m +1) 2, (y)P, (x,y.t)

Initial Conditions:

As elapsed failure and repair time are zero initially and
the system is completely in working state, the initial
conditions thus becomes:

P, (0)=1 for i=(m;,m,,m;) , m;=0, m,=0, m, =0
)

P (x,y,0)=0 for i=(m,,m,,m;) , 1<m +m,+m,<n

Boundary conditions:

Since a system is in the failed state at time t with failure
rate /4 (Y ) but repair has not been done at that time, so the
boundary conditions are specified as:

Forl<m,<n,m,=m,=0:
P (O,y,t):j(n -m, +1) 4 (Y )P, (X,y,t) dx (3.1)

For 0<m,<n, 0<m,,m
P.(0.y,t) ( Zm+1j

J.(Al(y)Pd (X,y,t)+/1,2(y)Ph(x,y, )+ﬂg( ) (X Y, ))dX (3.2)
+J‘(m1+1)/14(y)Pg (x,y,t)dx

Form,+m,=n-k+1, m, =0:

P (0.y.1) —[ Zm +1j
JUA P, (904 A3 )Ry (x30) ()P (1.0 (39
+J‘(mﬁ'l)/la(y)P@,(X,y,t)dx

Form,+m,=n-k+1, m,=1..,k-1:
P.(0.y,1) _( Zm +1j

j(ﬂq(Y)Pd(x,y,t)MQ(Y) (XY, t)+4(y)P, (th))dx(3_4)
+J‘(ml*'l)/la(y)Pg(X,y,t)dx

The system of differential Eqgs.(1.1-1.5) together with the
boundary conditions Egs.(3.1-3.4) and initial conditions
Eq.(2) are called Chapman- Kolmogorov differential
difference equations. Eq.(1.1) is a linear differential
equation of first order and other Eqs.(1.2-1.5) are linear
partial differential equations. In order to find the
availability of the system, the governing Eqgs.(1.1-1.5) will
be solved along with the initial and boundary conditions.

The system availability is the summation of the
probabilities of all working states, the general form solution
of the k-out-of-n:G system availability at time t is given by:
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A(t)=zi:Pi (x,y.t)

Ji=(m,m,,m;) ,m,+m,=n-k+1

4)

Here, according to the values of kK and n we use the
numerical method based on the Runge-Kutte 4% order
method to find the solution of the system availability A (t)
of Eq.(4) with the initial conditions Eq.(2) and boundary
conditions Egs.(3.1-3.4).

4 MATHEMATICAL MODELING OF THE
K-OUT-OF-N:G SYSTEM

Consider the k-out-of-n:G system when k =2and n=3.
Table 1 gives the event space of states of the system.

Table 1: Event space of states of the system
m | (m,m, m,)
0 (0,0,0)
1 (1,0,0),(0,1,0),(0,0,2)
2 (1L1,0),(0,11),(1,0,1),(2,0,0),(0,2,0),(0,0,2)
3 | (111),(12,0),(10,2),(210),(2,0,1),(30,0)

Based on the above notations and assumptions, the state
transition diagram of the 2-out-of-3:G system is given in
Fig. 1.

s e

Fig. 1: State transition diagram of the 2-out-of-3: G system

Probability considerations gives the following system of
differential difference equations associated with the state
transition diagram (Fig. 1). We first develop the differential

24(y)

24(x)
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difference equations in transient state by using mnemonic
rule, as under:

4 1Transient State When Both Failure And
Repair Rates Are Variables

The set of differential equations associated with the 2-
out-of-3:G system are given by:

(4354 R)-c, 61
(ﬁ+ﬁ+£+n(x,y)jPl(x.y,t)=C1(X,ylt) (52)
Sl iy peyo-ciyy 69
( +—+£+T3(x,y)JPs(x.y,t)=Cs(X,ylt) (64)
( +—+ai+T4(x,y)jPA(x,y,t)=C4(X,y,t) (55)
[§+§+%+T5(x.y)sz(x.y,t)=Cs(X’V’t) (5-6)
( )Py =€y ) 67
2, 0) P (xy )=,y ) 6

o 0 _
+&*am<x.yﬂps(x,y,t)—ca(x,v,t) 59)

g, 0 0

oLz Pty ) =4 ()R ) 616
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where,

Iﬂl (x,y,t)dx dy+J.y2 P,(x,y,t)dx dy

+Iy3(x P,(x,y,t)dx dy

LY ) =224 (V) +Auly ) (3)

C,(Xx,y.t) =224 (X )P, (X, y,t)+ s, (X )Ps(x,y 1)

Tz(x,y)=ZZﬂ,( Y )+, (%)

C,(x,y.t) = (X )Py (X, Y, t)+2u, (X )P (X,y t)
5 ()P (XY 1)+ 8%, (¥ )P (1) + 2 (¥ )P (X, 1)

T, (0) =224 (v )+ (x)

Cy(x,y )= (X)Ps (X, y,t)+ s, (X )Py (x,y 1)
+ 24, (X )Py (X, Y, ) +32,(y )Py (t)

TL00Y) = 2 (v )+ 22, ( )+ 200 (%)

C,(x,y,t)=3u (X )Py (X, y,t)+ 1, (X )Py (X,y t)
+ 1, (X )Py, (x,y 1) +24, (Y )P (x,y 1)

TGy )= 2 (Y )+ 20 (¥ )0 (X )+ s (X)

i=1

Cs(x Y, t) 2:“1( ) 11(X y t)+2/12( ) 13(levt)
+x”3( ) 14(X Yy, t)+212( ) (X Yy, t)
+22, (Y )P, (X, Y, t)+ 22, (Y )P, (x,y,t)

To 00 )= 34 (1) + 4y )+ () + 1 (1)

Co(X,y.t)=24,(y)Py(x,y .t)+24 (Y )P, (X,y t)
+ 4, (Y )Ps (x,y,t)

Y) =3 (x)+34,(y)

Y ) =200 (X )+ 4 (X )+ 224 (¥ )

Co (X, ¥ 1) =4 (Y )P X,y 1)+ 4, (¥ )P (X, ¥ )
+32,(y )Py (X, ¥ 1)

T (XY ) =200 (X ) + 45 (x ) +24, (¥ )

06y ) =4 (Y )P (XY )+ 4 (Y )P (X, ¥ )

3 (Y1) =4 (Y )P (Y 1) +22,(y )Py (X, )

( Ho (X )+ 115 (%)

Cr (Y )= A (¥ )P (x.y )+ A (v )P (x.y )

+22, (Y )P, (x,y,t)

_|
1S
—_

>
<

_|
=
—_

>
<

Initial Conditions:

at time t =0, the state probabilities given by Egs.(5.1-5.16)
satisfy the following initial conditions:

P, (0) =1
- (6)
P (x,y,0)=0 ,i=12...,15
Boundary Conditions:
the boundary conditions of the system are specified as:
P.(0.y,t)=34(y )Py (t) (7.1)
P,(0,y,t)=3 t)+[ 4 (y )P (x,yt)d (7.2)
P, (0,y,t)=34% ( ) () (7.3)
P (0.y.t)=[24 (v )P, (x,y,t)dx (7.4)
P,(0,y,t) .[212 (x,y.t dx+J‘2/1 )P, (X, y,t)dx
(7.5)
+J.2/11(y)P2(x,y,t)dx
5(0,y,t) J.2/11 (x,y,t)dx
(7.6)
+_[2A3 (x,y.t)dx
. (0,y.t) JZAZ (x,y.t)dx +jﬂ P (x,y.t)dx (7.7)
P,(0,y.t) :'[2/12 y )Py (x,y,t)dx +.f2ﬂ3 y )P, (x,y,t)dx
(7.8)
+IA4 y )P (x,y,t)dx
5 (0,y.1) =225 (y )Py (X, y .t )dx (7.9)
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Po(0,y,t) =4 (y)P.(x,y,t)dx (7.10) Pz(x,yit):eijz(x,Y)dx

Pll(O,y,t):J'ﬂl(y)Ps(x,y,t)dx +J'/12(y)P4(x,y,t)dx UCz(x,y,t)eIH(x y)d

7.11) T +32,(y ~x )Py (t-x) (9.3)
+IS/1 )Py (X, y,t)dx

+J‘/14(y -X)P,(x,y —x,t—x)dx}

P,(0,y.t) _M (x,y.t dx+.[/13 P,(x,y,t)dx (7.12)
—[Ta(x,y)dx
P,(x,y,t)=e I
Pa(0.y.1) = [ (y )Py (x,y )k (xyt) 04
(713) JT3(x,y)dx '
+J.2/1 )P, (x,y,t)dx IC3(x,y,t)e dx+3/13(y—x)P0(t—x)
PlA(O,y,t):'[/lz( Ps (X, Y t)dx +J'ﬂ3 (x,y,t)dx o1 PA(X,y,t):ef'[TA(x,y)dx [J‘CA(X’y,t)ejmx.y)dxdx
+124,( X,y,t)dx
j ¥)Pal Jox +_[221(y—x)Pl(x,y—x,t—x)de
Ps(0,y,t) J'ﬂa (x,y,t)dx (7.15) (9.5)
On solving the differential Eqgs.(5.1-5.16) together with P (X y t)ze—ﬁs(x,y)dx UC (X y t)est(x,y)dx dx
initial conditions Eq.(6) and boundary conditions Eqs.(7.1- AT AT
7.15), we can find all the probabilities and then the time
dependent availability function A (t)can be computed. For +.[ 22, (y =x )Py (x,y =x.t =x dx 9.6)
the validation of the results, the sum of the probabilities i J' 27, (y —_x )p4 (x,y —X,t =X )dx
should be equal to one for each Markovian model, that is
15 +|22,(y —=x )P, (X,y —x,t —=x)dx
Po(t)+ D P (x,y,t)=1 ®) J ]
i=1
. . . Pe(x,y,t):e-ITs(x,y)dx [ICG(X,y,t)eJTS(X'y)dde
The system of differential Eqs.(5.1-5.16) together with the
initial conditions given by Eq.(6) and boundary conditions
given by Egs.(7.1-7.15) are called Chapman-Kolmogorov +J.2’11 (y =x)Py(x,y =x,t =x )dx 9.7)
differential difference equations. Eq.(5.1) is a linear
differential equation of first order and other Egs. (5.2-5.16) +J. 22,y =X )P (x,y —x.t-x )dXJ
are linear partial differential equations. In order to find the I oy )i I oy )i
availability of the system, the governing Eqs.(5.1-5.16) P.(x,y,t)=e DC X,y t)el 7 dx
along with the initial conditions given by Eq.(2) and
boundary conditions given by Eqs.(7.1-7.15) can be solved -!—“‘2/12 (y =x)P,(x,y —=x,t —x )dx 9.8)
using the Lagrange's method following the approach of [9]
to get the state probabilities Py(t) and P (x,y,t) +_[/14(y =X )Py (X,y =Xt =X )dXJ
(i =1,2,..,15). « X
P,(x,y,t)=¢e g Tt UC (x,y,t)e [Tl gy
—323: (y)t 3iﬁ(y)t
P,(t)=e 3 [1+Ico(t)e = dt] (9.1) +.[2/12(y—x)P3(x,y—x,t—x)dx ©9)
—IT(X y )dx +J‘223(y _X)PZ(X,y—X,t—X)dX
P(x,yt)=e’""
. 9.2) +.|'i4(y —x)PG(x,y—x,t—x)dx}
Ucl(x,y,t)efl( " dx+3/11(y—x)Po(t—x)}
Py ) =2 T e ey el o
(9.10)

+J‘213(y =X )Py (x,y —X,t—x)de
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P (x.y 1) =e Tl Ucm (x.y t)el ™™ g

(9.11)
A4y =x)P, (xy =x,t=x)dx |

P.(x,y.t)=¢ _[Tuxy Jix [J.Cu (x.y.t)e an(x‘y)dde
+~[ﬂl(y_x)P5(X’y—X,t—X)dx

2 (y =X )P, (x,y —x.t-x)dk

9.12)

+[3,(y =% )Py (x,y =x .t =x o |
Py (X, t)=e 0 U%(X:y el gy
+[ 2 (y =X )Py (XY =t =x )X ©13)
+ [y =x )P (x.y .t =xJox |
P, (x,y t)=e Tt DCB(X,y,t)eﬁ“(x'”d*dx
+[ 2 (y =X )Py (x,y —x,t =x)dx (9.14)
22, (y =X )Pu (x,y =x,t =x)dx |
ey )4 [ .0 Ve
2 (y =X )Py (x.y =Xt —x )k
Ay =x)Ps(x,y =x.t =X )

+[22,(y =X)Py (X, y =Xt =x )ox |

(9.15)

P15(X,y,t) JT“’XV |:IC15 X,y t) JTIS(XVY)dXdX
(9.16)

+[ 24 (y —X)PG(X,y—x,t—x)de

From Eqgs.(9.1-9.16), all the probabilities can be obtained.
The time dependent availability /-\(t) of the system is

given as:

A(t) =Py (t)+ [P (x,y t)dxdy + [P, (x,y,t)dx dy
+IP3(x,y,t)dx dy +IP4(x,y,t)dx dy
+[Po(x,y t)dxdy + [P (x,y.t)dx dy (10)
+ [Py (x.,y t)dxdy + [Py (x,y.t)dx dy

+IP12(x,y,t)dxdy

As a special case we shall now discuss how to develop
Chapman-Kolmogorov differential equations in transient as
well as steady states when both failure and repair rates are
constants.

4 2Transient State When Both Failure And
Repair Rates Are Constants

When both failure and repair rates are constants then

2 i—>O Consequently Eqgs.(5.1-5.16) reduces to the

ox oy
ordinary linear differential equations which are given
below:
d 3
(3434 )= R0 PO+ R() L
i=1

(d—+2i/1|+/14+MjPl(t)=2,u1P4(t)+y2Ps(t)
dt 4= (112)
+ 44 Py (1) +34, Py (1)

(d—+223:1,+y2]P2(t)=;11P5(t)+2y2P7(t)+,u3P8(t)

dt = (11.3)
+32, Py (t)+ 4, P.(t)

(S2500 1 [P0 Pu 010 P 0+ 2P )

dt = (11.4)
+34, Py (t)

(d—+il,+2/14+2M)P4(t):3,ule(t)+,uzPn(t)

dt = (11.5)

+ 1y P1z(t)+2/11P1(t)
[d—+i1, +/14+M+ﬂ2]p5(t)=zﬂl P (t)+ 21, Py (1)
dt & (11.6)
+ 1, Py (1) + 24, P (t)+ 24, P, (t)+ 24, P, (t)

(:T+Zi +4, +ﬂ1+ﬂ3) 5 (1) =244 Py (t) + 12, Py (1)

i=1

11.7)
+24, P (t) + 24, Py (1) +22, P, (1)

(;j_t+2y2)P7 (t):2ﬂ'2 P, (t)+/14 Ps(t) (11.8)
[:_th +y3)P8 (1)=24,P,(t)+ 24, P, (t)+ 4 Py(t)  (119)

(52 P =22R,() (11.10)
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(:t+3,ul+3/l) S(t)= 4P, (t) (11.11)
d

(dt+zﬂ1+ﬂz+uj ()= AP, ()4, Py (1) -

+314P10(t)

[dt+2ﬂl+ﬂ3+zzj ()=AR()+4P,()  (1L13)
(d— 2%] t)= 2, Py (t)+24, Py (t) (11.14)
dt

(3—+,u2+,u3] ()= 4P (1) AP (t)+24, Py () (1115)
(Svam Pu=4R.() 1116

Initial conditions:
The initial conditions of the system are as follows:

ORI 1)
0 a=12,..15

One can obtain the state probabilities by solving the system
of differential Eqs.(11.1-11.16) together with the initial
conditions Eq.(12) using Laplace transformation method.
We obtain:

g

tP(s) =, Py (3)= s Py (s) =1 (13.1)

(s 2234 +/14+,L11JP1(S)—2,L11 P, (5) 1, Pu ()

660
(S+Zﬂ, +1, +:u1+:“2j ( ) 24, P, ( )—Z,uZPB(S)
(13.6)
1P, (8)—-224,P,(s)-24,P,(s)-24P,(s)=
(S +Zﬂ, +4, +,ul+,u3j ( ) 21, P, (S)—,u2 PM(S)
i=1 (13.7)
—2/1; Pis (3) =24, Py (s )24, P (s) =
(s +21,)P; (s) =24, P, (s) =4, P, (s) =0 (13.8)
(S+ 4, + 145)Py (5) =24, Py (s) =24, P, (5 ) -4, P (s) =0 (13.9)
(S +245)Py (s)-24,Py(s)=0 (13.10)
(s +31,+34, )Py (s)-4P,(s)=0 (13.11)
(S+2u+ 1, +22, )Py (3) -4 Py (s)— 4, P, () 13.12)
32, Py, (s)=0
(S 424+ pt+224, )P, (8) = A4 Py (s)- A4 P,(s)=0 (13.13)
(5 +2, )Py (5) =2 Py (5 )~ 24, Py (5) =0 (13.14)
(S+tty + 115 ) Py (5) =2, Ps(s)— 4, Py (s)— 24, P, (s) = 0(13.15)
(s +24, )P (s) =4 Ps(s)=0 (13.16)

But it is difficult to find inverse Laplace transformation of
Eqgs.(13.1-13.16)  since  expressions for probability
transforms are in very complicated form and the
complexity increases with the increase in number of
equations. To overcome such type of problems, the system
of Eqgs.(13.1-13.16) has been solved numerically to obtain
the Laplace transformations P, (s), i=0,1,2,....,15 and

- (132) the inverse Laplace transformation. The availability A (t)
—14; P (s)—=34, Py (s)=0 of the system can be computed as:
3 A(t)=Po(t)+P1(t)+Pz(t)+P3(t)+P4(t)+P5(t)
[s +2) 4 +,usz2 ()= 14 Py ()2, P; (3 )= 11 Py (s) (14)
=l (13.3) +Pg (t)+Py (t)+Py (t)+Py(t)
-34,P,(s)-4P,(s)=0 o
e 4.3Steady State Availability When Both
- y - y
(s+223:i . jp (5)= 14 Py (5) tt Py (8 )~ 204, Py (5) Failure And Repair Rates Are Constants
i TH —H H H
= ) ° 2 ’ (13.4) Management is always interested in steady state
34,P,(s)=0 availability to achieve their optimal target. This can be
obtained mathematically by taking c(ij_t —0 as t > in the
3
(S + Z/l, +22, + 2:“1] P,(s)=31 Py (s)— 1, Py (s) system of Eqs.(11.1-11.16) therefore, the system of Eqgs.(11.1-
i (13.5) 11.16) reduces to the following system of linear equations:
~#5 Py (8) =24 Py(s) =0 ]
(3 ;tljpo_:‘ﬁpl_ﬂzpz_ﬂspszo (15.1)
i1
3
(22& + +:“1JP1 =244 Py — 11, Py — 14, P =34 Py =0 (15.2)
i=1
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S (s +4
[224 +,uZ]P2 -1 P =24, P,— 1, P, —34, P, -1, P, =0 (15.3) P, = %Pm (16.5)
i=1
S 6
(221, +,L13)P3—/11P6—y2P8—2y3P9—3i3P0:0 (15.4) Psz/u 2(’142)“2+/142]1+2/14/12ﬂ1+/14/11/‘1+}”2/‘12)|310 (16.6)
i=1 2
y P, = 6% AF+2 A+l )P, 16.7
> A 22, + 20 [Py~ 311 Py — 11, Py — 11, Py s = (A +2 1 A+ 14 )P (16.7)
= (15.5) A 1
24P, =0
AP P, = %[4/15%%%%/14%%%%1%&
3 2
(IZ_;/’. +ﬂ’4+Iu1+ll’12jp5_ZMPH_ZIUZPB_”SPM (15.6) +3ﬂ*42ﬂ1ﬂ'22+324ﬂ122-22+ﬂ13122+/143122 (16.8)
—212P1 - 2}“4P4 —2},1P2 =0 +}“j /112 +ﬂ,42 112 :ul] Plo
ii + A, + 4+ s |Ps —204P, — 14,Py, — 214,P, 67, 2 2, 93 3 A2
— i 4 3 "6 1712 214 315 (15.7) PS: 3 [2/14/11,ul+/1421ul+/14/11+ Mﬂ%ﬂ"z
A 1y (16.9)
24P, -24,P, =0
A5 T2 4348 Ay dy 4182 A 4 23 2y Py
2u,P, —22,P,—1,P, =0 (15.8) 27
2 3
(ﬂz"‘ﬂs)Ps_Z/lzPs_ZjePz_@Pe =0 (15.9) Py = Ny (3'u1 A+ 34 Ayt 4+ A ) (16.10)
24P, — 24P, =0 (15.10) P, =P, (16.11)
(314, +34,)Py— 4P, =0 (15.11)
Py = A (A i+ 2y 2+ 2y 24) Pyg (16.12)
(24, + p1, + 24, )Py = AP, = 2,P, =34,P,, =0 (15.12) #2
3
(264 + pts + 22, )Py = 4Py = 4P, =0 (15.13) P, = ;; (44 + )Py (16.13)
3
24,P, — A,P, —24,P, =0 (15.14) 3 . 2 2
Po=——|4 4 +24 2 A A 42 A A A
(4 + ) Py = APy = APy —24,P,, =0 (15.15) ° /122212[ s A
(16.14)
24,P — AP, =0 (15.16) 1 2+ A8 [Py
Solving the system of linear Eqs.(15.1-15.16) using Maple 64,
program, we get the state probabilities determining the Pu= [/1 Do+ 0 Iy 420 Doy + 2 2 1y
steady state availability of the system in terms of P, . Ho 74ty (16.15)
These are obtained as follows: 2
A, 1y :|P10
Su A2 4342 A, + 1820+ A2
Po:( LR 4)P10 a6 e 2
A Pis =5 (A + 24 24 + 14 )Py (16.16)
3
3 2 2
== 24 A P, 16.2 5
A7 (/14 TEMATH ) 10 (162) , and using the normalization condition ) P, =1 we can get
i=0
Py = (242 h g A dy 4 2 24301 A 2y o
Uy A (16.3) Thus, the steady state availability of the system is obtained
as:
342 Ay Ay + 40 Ay + A0 A, |P
e ot 1 D+ B [P A(0)=P,+P, +P, +P, +P, +P, + P, + P  + P, +P,  (17)
p, - % (314,48 +345 2y + 12+ 1) Py (16.4)
PR 5.3NUMERICAL SOLUTIONS
For the above particular cases when both failure and
repair rates are constants, the numerical results of the
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availability of the 2-out-of-3: G system and the steady state
availability are given as follows:

5.1Transient State When Both Failure And
Repair Rates Are Variables

The numerically computations have been carried out
starting from time t =0 to t =50.
The failure and repair rates of each component are given
by:

#, =010 , u, =007 , u, =0.09

A4=006 , 4,=002 , 4=004 , 4,=0.08

Using Maple program, the 2-out-of-3: G system availability
given by Eq.(14) versus time is shown in Fig .2.

10 4,

At} ]

09

0%

0.7 4

1] 10 m 30 4 50

Fig. 2: system availability A(t) versus time t

5.2Steady State Availability When Both
Failure And Repair Rates Are Constants

The system of linear Eqs.(15.1-15.15) has been solved
numerically using Maple program using the above values
of the failure and repair rates of each component.

The obtained values of the steady state probabilities are
as follows:

P, =0.075% ,P,=0.0756 ,P,=0.1511 P, =0.1008
P,=00252 ,P,=0.1008 ,P,=0.0672 ,P,=0.1008
P, =0.1344 P, =0.0448 ,P,=0.0028 ,P,=0.0168
P,=0.0112 ,P,=0.0336 ,P,=0.0448 ,P,=0.015
Thus the steady state availability as defined in Equation
Eq.(17) is given by:
A(0)=P,+P +P,+P,+P, + P, + P, +P, +P, +P,
=0.6268

662

6 CONCLUSION

The main objective of this paper was to offer a
methodology for analyzing the availability for the k-out-of-
n: G system with three types of failure rates; partial failure,
complete failure under repair and complete failure under
maintenance, using Markov model and supplementary
variable technique. 2-out-of-3:G system is presented in
order to illustrate the performance of the model. The
problem of evaluating the availability of the system was
formulated in a set of first order partial differential
equations form, which seems convenient for computation
with software packages like Maple program. Lagrange’s
method is used in this model to evaluate the state
probabilities from the set of first order partial differential
equations along with the initial conditions and boundary
conditions when the failure and repair rates are variables.
When both failure and repair rates are constants, the system
of differential equations with the initial conditions has been
solved using Laplace transformation using Maple program.
Finally, the long run availability, steady state availability
when both failure and repair rates are constants, has been
computed for given values of failure and repair rates.
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